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~BSTRACT

This paper generalizes an integral representation formula for eigenfunctions

of Sturm— Liouville operators, known as the Volterra transformation operator in the

theory of the inverse scattering problem, to higher—order differential operators.

A specific fourth-order initial value problem is considered:

L += k
4
~~, L = - ~-j -  +- .

~~
_ 

~~~)+r

- 

- 
+ ( o) = 1 , + ‘ ( o) = 0 , +“(o )  = —k2 , •“ (o) = 0

The solution for complex k is expressed a~ an inverse—Laplace-Borel transform.

Jump formulae are obtained relating the representing kernel directly to the

coefficients of L. The result admits obvious generalization to operators of

arbitrary order.

AMS (MOS) Subject Classification: 34325

• Key words: Linear initial value problem with complex parameter, Laplace—Borel

Transform, Entire functions of exponential type.
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SIGNIFICANCE AND EXPLANATION

The motions of systems governed by linear ordinary differential equations can

often be developed in series of normal modes or eigenfunctions; i.e., solutions of

initial- or boundary—value problems involving differential  equations of the form

J . 4 = A +

where L is a linear ordinary differential operator, and A is a complex number.

In the theory of inverse spectral problems — that is , problems in which properties

• of a differential operator or system are to be inferred from information about the

normal mode expansion — detailed information about the structure of normal modes

plays a role . For instance , the density of a vibrating string can be deduced from

observation of the motion of a single point on the string, which in turn may be

interpreted as information about the normal modes. In the solution of this problem,

an integral transform of Volterra type, relating the normal modes of an arbitrary

string to trigonometric functions (normal modes of a homogeneous string) , plays a

• - central role .

The differential operator which figures in the string problem is of second-order.

Inverse problems involving higher—order operators , however , have so far resisted

analysis. Among these is the problem of inferring the density of a vibrating beam

from the motion of one point on the beam , which again may be interpreted as normal

mode information . This inverse problem involves a differential operator of fourth

order.

This paper describes an integral representation formula for eigenfunctions of

higher order — in particular, fourth order — operators, which has many points in

common with the Volterra transform mentioned above in connection with the inverse

problem of the vibrating string . The Volterra transform is in fact a special case ,

and the representing kernel is directly related to the coefficients of the operator

involved.

The responsibility for the wording and views expressed in this descriptiv~ summary
lies with MRC , and not with the author of this report . 
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AN INTEGRA L REPRESENTA TION FOR EIGENFUNCTIONS OF LINEAR ORD I NARY DIFFERENTIAL OPERATORS

W. symes

§1. Introduction and Statement of Results

The purpose of this short note is to present a type of integral representation

formula for the solutions of linear differential equations containing a parameter of

the form

The main result is a representation formula for the solution of the four th order initial

value problem

L~~,—~~(x,k) = k4~ (x,k) x ~ 0

L ~~~~~~~~~~ 
•
~~~~~

. + ~~
(
~ x)~~~ + r (x)

4 ( o, k) = 1 , ~~~(o , k) = o , ~~
—

~~
- (o , k) = —k2 , ~~~~~~ (o , k) = 0. (1)

dx dx

Here q.q’ and r are continuous and complex—valued on [0, 1.

Representation Theorem. Denote by P(x )  the diamond with vertices at

±x,±ix. Then the solution + (x ,k), x ~ 0, of the initial value problem (1)

admits the integral representation

• (x ,k) = coskx + ~ 13P(x) dZ ~~~ A ( x , z) ( 2)

The kernel A (x,z) is square-integrable on zcaP(x), and continuous for x ~ 0 ,

z~~ P ( x ) ,  Z 
~ ±ix; at the vertices ±ix, A (x,z) undergoes a j ump given by

liin (A(x , ±ix—tS) — A (x, ±ix + 6)) = —~~f dtq(t) (3 )
6 -’o

A(x ,z) enjoys the symmetry properties

A(x , —z ) = —A (x ,z) , A(x , z) = —A(x ,z) (4)

Sponsored by the United States Army under contract No. DAAG29—75—C—0024 and the
Nat ional Science Foundation unde r Grant No. MCS7S- 17385 AOl .
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The proo f is presented as follows . Several elementary estimate s for the

solution of (4) are given in § .~. The main step in the proo f is furnished by a Theorem

of B. Ja. Levin on entir’ functions of exponential type , which is discussed in §3.

The proo f is completed ir §4.

The result descrildd above is clearly a special case of a general result, concerning

the initial— ”eigenfunc:ion” problem for a differential expression of arbitrary order n,

-‘ in which the integration contour ~~P is replaced by a suitable polygon with n vertices.

• The reader will have no trouble formulating this more general result and supplying

a proof following the model presented here. (Also, further jump relations, other than

¶ (3) are undoubtedly present and can be derived by the method of §4.)

For n = 2, the contour collapses to a slit, and the contour integration is identical

to integration of the jump of the integrand (across the slit) over an interval. The

representation then becomes the Volterra transformation operator which figures in the

theory of the inverse scattering problem for Sturm—Li ouville operators , as outlined

in [2]. The jump formula analogous to (3) is well known in that context.

If

—2—
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§2. Some Elementary Estimates.

We consider fourth—order differential expressions on the half—axis [0,”>

of the form

d4 d fd \ + r  (5)
+ —~~q~~dx dx~~

with q e c1([O ,=)) , r c c° ( [ O ,= ) ) .  We denote by L the expression with q r 0

i.e., the fourth—derivative operator. We wish to estimate the solutions of the initial

value problems

¶ 
14 = k4~ 

~~(v) (0) =

0,1,2,3

p = 1,2, 3,4 , k C (6)

To do this we view L as a perturbation of L
0
. Denote the solutions of (6) with L~

in place of L by ~
0
(~ ,k). We have

4~~(x,k) = 4(cosh kc + cos kx)

$~ (x,k) = ~~~sinh kx + sin kx)

0 1 (cosh kx - cos kx)
$3
(x,k) = —i

$~ (x,k) = 
l (.~~ kx - sin kx)

Using variation of parameters, we obtain the following integral operation for the

differences çl~~(x,k) = + (x,k) —

¶j~~(x,k) + f~G(x,y,k)*~ (y,k)dy

+ f
)C
G(x,y,k)$

O 
ii(y,k)dy = 0 C 7 )

where G(x,y,k) = q(y) (sinh k(x y) + sin k(x—y))

+ ~~~~~~~~~~ (y)(cosh k(x—y) - cog k(x-y))• 2k y

+ —.L~ r (y )  (sinh k ( x — y )  — sin k(x—y))
2k

—3— 
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The method of successive approximations converges for the integral equation (7 ) since •

S 
it is of Volterra type. In the process , we obtain the estimate for each x � 0

l’p (x,k)~ ~ C l k I~~e~~ 0 ~ x x

where p = max {jRek I I ImkI} and the constant C generally depends on x .  Similar

estimates follow for the derivatives of *.

I ¶

!
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§3. Some Facts from the Theory of Entire Functions.

We collect here some notions and facts from the theory of entire functions, which
5’

- 

S 
will be used in the next section. Proofs may be found in the monograph of B. Ja. L.evin

a
1 

( 5 ) ,  Chapter I (
~~~ 

15 , 16, 19, 20). We also state a slight strengthening of Levin s

generalization of the Paley—Wiener Theorem (Appendix I, §3 of (51).

An entire function of f is of exponential ~~~~ is there is A � 0 so that

I f ( z ) I < A J z)  
, Z C .

The (exponential) ~~~~ of such a function is the number

¶ I log M
f
(r)

a = l i m sup rr~~~”

where we have used the common notation

16
• . Mf

(r) = sup If ( re ) I
0�O�21T

• 
Otherwise put, for any r > 0, there is r > 0 sufficiently large so that if ~~ > r

• If(z)l � e~~~~~~~
t

but there are numbers z of arbitrarily large modulus for which

If(z) I > e~~~~~ t

It follows that if an entire function f obeys an estimate of the form

1 f z 1  S C e~~
ZI , I z i  large

then f is of exponential type ~ k . Denote by E the class of entire functions of

exponential type. The indicator function h f of an entire function f of exponential

type measures the growth of f in various directions in the complex plane. It is

defined by

h f
( 6 )  = log If(re1 > i

—5— 
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ii
The indicator function enjoys the following properties:

(i) jf f , g € E , ~hen

hf.~~(O) < max{hf(6)~ hg (6)}

• 
- h (8) < h (e)  + h (8)

- -. - fg f g
• 1 - .

Recall that the support function k ( 0 )  of a convex set G in the plane is the

in finun of the signed distances from the origin to half—planes perpendicular to the

• • ray arg z = 8 , which ha ’e no points in common with the interior of G (see fig. 1).

(ii) for f e E , Hf is the support function of a convex set If , 
called the

indicator diagram of f

(iii) The indicator diagram of f(z) = e~~ is the singleton set {A}

(iv) If h
f
(e) � h~ (8) 0 5 8 5 2iT • then the indicator of f is contained

in the indicator diagram of g

(v) The indicator diagram of a sum f1 
+ + of functions f

1
. . f~ C E is

contained in the smallest convex set containing the union U I~

This follows from (i)

(vi) Suppose f~ C E , and denote by L the smallest convex set contaiflir7

all points which are extreme points of precisely one of the sets I
~ 

I
~1 k

Then K~~ If + +f1 k A1Z A2z AkZ
(vii) The indicator diagram of the exponential sum f(s) = e + e +. . .+ e

with the A s  distinct, is the polygon with vertices A 1
, A2 

(viii) Suppose that the exponential type of f is~~0. The the indicator diagram of

e~~f(z) is obtained from the indicator diagram of f by translation through

the vector A.

The next collection of facts centers around the Borel Transform.

I f f c E ,

n f l
• f(z) =

n 0

then the Borel transform ? of f is defined by the series

-6- 
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= a
f ( C ) =

5’ 

n=

(i x) The function of f ( ~~) is holomorphj c in the domain ~J > a , where a is

the exponential type of f . In particular, I is holomorphic at infinity .

4- (x) The Borel transform is additive and complex-homogeneous, and the Borel

transformof the function g(z) = e~~ is

~~~~~

( x i)  Denote by y
~ 

the ray arg z = 0 . suppose f C E. Then the integral

¶ 
I dz e 2C f ( z)Y e

converges absolutely and uniformly in the domain {~ : Re ~ e~
8 

> h f
( 8)  + c}

to f ( ~~) .  Also , if C is any circ’e of radius >0 = exponential type of

f , then

f(z) 
d~ e~~ ~~~>

The conjugate diagram of f C E is the convex hull of the singularities of f . It

obtains its name from the following remarkable theorem of Polyá:

(xii) The conjugate diagram i-s a function in E is the reflection about the real

axis of its indicator diagram.

We will therefore denote the conjugate diagram of f by

We come now to Levin ’s generalized Paley—Wiener Theorem (1 5 1. Appendix I , §3) .

Theorem 3.1 [Levin). Suppose f C E, and suppose that the conjugate diagram

of f is contained in the convex polygon P. Denote by arg z = 0 .  , j = 1 n ,

the rays parallel to the normals of the sides of P . and suppose that the functions

—18 . — k ( 0 .)x
f . ( x )  = f(xe 3 )e ~

are square—integrable on the half—axis 0 < x < “, where k(O) is the support

function of P. Then the Borel transform f is holomorphic outside P , and its

boundary values on the perimeter ~P define a function in L2 (~ P ) .  Moreover,

—7—
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f ( z ) = 
~~~ 1ap ~~ 

e~~~~~c

The proof is given in Levin’s book [ 5 1,Appendix I , §3. We will also need the

- :  following theorem, whose proof is similar to that of Theorem 3.1.

•+.~~~

•

Theor~is 3.2. Let the hypotheses be the same as in the previous theorem,
i0. —k(8 .)x

except that the functions f.(x) f(xe 3)e ~ are assumes to be

absolutely integrable. Then the Borel transform f assumes continuous boundary

values on ~P.

—8—
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5 §4. Proof o~ the Representation Theorem

To derive the integral representation, we f i r s t  re-interpret the estimates of §2.

These estimates r ead

J~1(x,k)I S CIkI 1e~ I~3(x,k)I S C~k~~~e
Px

where p = max{ IRe k i ,  u r n  k I}  , and

= +1
(x ,k) — 4(cosh kx + cos kx)

t~ (x,k) = 43
(x,k) — —~~-(cosh kx — cos kx)

2k

¶ Let $(x,k) be the solution to the initial value problem

14 k’
~ , 4(o,h) = 1 , 4’(o,k) = 0, •‘(o,k) = —k

2 , 4~’” (o,k~ 0

and set

ip(x ,k) = ~(x,k) cos kx

= P1
(x,k) — k2ip

3
(x ,k)

We obtain the estimate

• ~,(x,k)I S C I k I e~~ (8)

in each finite x-interval. All of the above estimates hold for k sufficiently large,

and similar estimates fold for x-derivatives up to order three.

Define

h(x,0) = x max {I co s e l ,  s i no l )  , 0 5 0 5 2,r

If we set k = re~~ , we can rewrite (8) in the form

—l rh(x , 0)
~(x,k) - C r e , large . (9)

We can therefore conclude that ¶) (x,k) is an entire function of exponential type ~ x

and moreover that the indicator function of *(x,.) is bounded above by h (x,8)

According to §3, property (iv) , the indicator diagram of ~(x,) is contained in the

diamond P(x) with vertices O x , ix, which is the convex figure of which h(x.0) is

the support function. Since F(x) = ~(x) , the same is true of the conjugate diagram

of ~ (x,~~) . Moreover, estimate (9) shows that the function

—9—
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—rh (x, 0 )  iO)
*(x,re

is square—integrable as a fui~ction of r , 0 5 r S for 0 5 5 21T . It follows

from Theorem 3.1 that the dorel transform A(x,~~) of ~(x,)  is homomorphic in the

experior of P(x) , assumes square-integrable boundary values on ~P(x) , and

i~(x,k) = 
~~~~~~ 

I dz ekZA(x,z)

so that the function 4~ x,k) admits the integral representation

ItI (x,k) = cos kx + f  dz e~~ A ( x , z)

~P(x)

We will now show that the kernel A (x,z) is a continuous function of z C ~P (x)

except at the vertices ~ ix . To do this, derive from the integral equation (7) for

~~
,p  = 1, 2 , 3, 4 , an integral equation for ~

(i
- 

x x
-

. 
ip (x,k) +1 dy G( x ,y, k ) *( y, k) +1 dy G ( x ,y , k ) c os ky = 0

0 0

where G (x ,y ,kl is defined in §2 , and satisfied the estimate

G(x ,y, k) I < M(y) r~~ ~
rh(x_y~e)

M(y) = max{ q(y) , Iq ’ ( y ) I ,  r (y) }

io
and k re

Since ~~~~~~~~~ cos ky ~ e
rl
~~
x.0) and h(x—y,e) + h ( y , 0 )  = h(x,0) , we obtain for

successive terms in the Neumann series

x
U (x ,k) = —f dy G(x ,y,~ ) coS ky
1 0

U~~1
(x .k) = _1

:
dY G (x ,y , k )U ~~(y, k)

the estimate n
U(x ,k)I e~ ”~ ’8>

M = 1  dyM (y )
0 .

—10—
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—J1(x ,k )  = —
~~~ I dy q (y) (sizth k (x—y) + sin k (x—y )) c o s  ky

5 0

Then the above estimates imply that

~(x, k) = J
1
(x,k) + J2

(x , k)

whe re J
1 (x , ) ,  J

2(x, ) are entire functions of exponential type with indicator diagrams
4 contained in P(x) , and

J2 (x
,k) O( Ikj_2 e~~~~~

G))

iGas k r e  + =

It follows from Theorem 3.2 that

A (X , z) = .3
1
(x,a) + J

2
(x,z)

where J
2(x,z) is continuous in z C aP(x). We therefore need only show that ;

1 (x,z)

is continuous except at z = ± ix . ‘l’o do this write

x

• 

- (sinh kx + sin kx) = I dt(cosh kt + cos kt)

so that
x x-y

J (x,k) = —1 f dyf dt q(y)(cosh kt + cos kt)cos ky1 2~~~ o

= 
~~~~ dt f  dy q (y )  (e (t

~~~~~ + e
(t_

~~~~ + e
(_t Y~~

O 0

+ e t
~~~

) J
~ + ~

i(t
~~~ 1~ + e~~

t_
~

)k 
+ e i5 t’

~~~~~

+

Si nce the indicator of J
1(x , .) is bounded by h ( x , 0), the integral

7 ~~c e~~~ J ( k )
0

converges for Re z sufficiently large to J
1
(x,), the Borel transform of J

1
(x, ). It

is easy to justify changing the order of integration. Using property (x) of §3 we obtain

—11-- 
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31(x , z) = 

~~~~~ ~: 
t

•

~~~~~~dY 9 ( Y )  1z~(t+i:) 
+

z— ( — t+ l y )  z+(t+ ~y) z—1 (t +y ) z — i ( t — y )

+ 
1 + 1

z—i(—t+y ) z+i(t+y)

valid for Re z sufficiently large. An elementary normal families argument allows us

to continue the right hand side in the exterior of P , so that the above representation

is valid in tI\P . We write the right hand side as a sum of eight integrals. The

• sum of the first four defines a function holomorphic in ~\P and continuous on

- • 
((E\P)u~P , in view of the following.

Lemma. suppose that Q(z) is bounded, absolutely integrable, and has compact

support contained in the closed upper half—plane.  Then the integral

f f dzdz~~~4!_
Iin z>0

• converges absolutely and defines a continuous function of ~ in the closed lower

half—plane {~ : Im C S O} , holornorphic for Im C < 0.

The sixth and seventh integrals can be shown to define continuous functions up to the

boundary ~P : they are in fact holomorphic in the complement of the segment [-ix, ixl

on the imaginary axis , and have integrable singularities at the vertices ± ix . The

f i f t h  and eighth integrals are also holomorphic in the complement of [-ix , ix)

but have non—integrable singularities at ± ix. We have thus proven the assertion

regarding the continuity of A(x,z) in z

We can also compute the j umps of A ( x , z) at the vertices ±ix , which are

precisely the jumps of the fifth and eighth integrals above . The computation is

standard; see for instance 1 1 1, pp. 73—75. We obtain

—1 2—
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1•
‘
~~~~ . lim (A (x , ± ix—6 ) — A (x, ± ix +6))

x
S d t q ( t - )

-- 0

Since 4(x,k) is an even function of k , A ( x , z) is an odd function of z

5
~~~ this follows from the inversion formula for the Borel transform (§6 , property (ix)).

Also , the real i ty of ~ (x , k) for k real implies that A(x ,z) = — A ( x . z)  for

z c ~P (x).

This concludes the proof of the representation theorem.

—13—
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